A lightweight helper library that takes a technical description or code snippet about Go concurrency concepts and returns a structured, concise summary. It is especially useful for extracting key details such as purpose, usage, and implementation notes from a fair, cancelable semaphore or other concurrency patterns.
The package is available on PyPI as go_concise_summary and works as a drop‑in function that can use the default ChatLLM7 model or any LangChain compatible LLM.
pip install go_concise_summaryfrom go_concise_summary import go_concise_summary
user_text = """
A fair, cancelable semaphore in Go can be implemented using a counting semaphore
pattern with a context for cancellation. Its purpose is to limit concurrent
access to a resource while ensuring that waiting goroutines are notified when
the semaphore is released or when the context is cancelled.
"""
summary = go_concise_summary(
user_input=user_text
)
print(summary)
# Output will be a list of strings matching the expected regex pattern.def go_concise_summary(
user_input: str,
api_key: Optional[str] = None,
llm: Optional[BaseChatModel] = None
) -> List[str]| Argument | Type | Description |
|---|---|---|
user_input |
str |
The Go concurrency description or code that you want summarized. |
api_key |
Optional[str] |
API key for the default ChatLLM7 service. If omitted, the function will look for an environment variable LLM7_API_KEY. |
llm |
Optional[BaseChatModel] |
A LangChain LLM instance. If supplied, the function will use this LLM instead of the default ChatLLM7. |
The library ships with a bundled ChatLLM7 instance, but you can pass any LangChain LLM that implements BaseChatModel.
from langchain_openai import ChatOpenAI
from go_concise_summary import go_concise_summary
llm = ChatOpenAI()
summary = go_concise_summary(user_input=text, llm=llm)from langchain_anthropic import ChatAnthropic
from go_concise_summary import go_concise_summary
llm = ChatAnthropic()
summary = go_concise_summary(user_input=text, llm=llm)from langchain_google_genai import ChatGoogleGenerativeAI
from go_concise_summary import go_concise_summary
llm = ChatGoogleGenerativeAI()
summary = go_concise_summary(user_input=text, llm=llm)If you require higher rate limits than the default free tier, create or export an LLM7 API key:
export LLM7_API_KEY="your-api-key-here"or pass it directly:
summary = go_concise_summary(user_input=text, api_key="your_api_key_here")Free LLM7 API keys can be obtained at https://token.llm7.io/.
- Prompting – The function composes a system prompt (
system_prompt) and a user prompt (human_prompt) that instruct the model to produce a concise, structured summary of the Go concurrency snippet. - LLM Call – It sends the prompts to the configured LLM.
- Regex Extraction – Using the pre‑defined
pattern, the response is validated and formatted. The extracted information is returned as aList[str].
Found a bug or have a feature request? Open an issue here: https://github.com/chigwell/go-concise-summary/issues
- Eugene Evstafev
- Email: hi@euegne.plus
- GitHub: @chigwell